Abstract
The thermodynamical stability of free, pristine gold clusters at finite temperature, and of cluster+ligands complexes at finite temperature and in the presence of an atmosphere composed of O2 and CO, is studied employing parallel tempering and ab initio atomistic thermodynamics. We focus on Au13, which displays a significant fluxional behavior: Even at low temperature (100 K) this cluster exhibits a multitude of structures that dynamically transform into each other. At finite temperature, the preference of this cluster for three-dimensional versus planar structures is found to result from entropic effects. For gold clusters containing one to four gold atoms in an O2 + CO atmosphere, we apply ab initio atomistic thermodynamics. On the basis of these considerations, we single out a likely reaction path for CO oxidation catalyzed by gold clusters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.