Abstract
To reduce form grinding errors, this paper proposes a free-form flank topographic correction method based on a five-axis computer numerical control (CNC) gear profile grinding machine. This correction method is applied not only to the five-axis machine settings (during grinding) but also to the wheel profile (during wheel truing). To achieve free-form modification of the wheel profile, the wheel is formulated as B-spline curves using a curve fitting technique and then normal correction functions made up of four-degree polynomials are added into its working curves. Additionally, each axis of the grinding machine is formulated as a six-degree polynomial. Based on a sensitivity analysis of the polynomial coefficients (normal correction functions and CNC machine settings) on the ground tooth flank and the topographic flank errors, the corrections are solved using the least squares method. The ground tooth flank errors can then be efficiently reduced by slightly adjusting the wheel profile and five-axis movement according to the solved corrections. The validity of this flank correction method for helical gears is numerically demonstrated using the five-axis CNC gear profile grinding machine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.