Abstract

Every aerodynamic optimization is proceeded by a parameterization of the studied aerial object, and due to its influence on the final optimization process, careful attention should be made in choosing the appropriate parameterization method. An aerodynamic optimization of a morphing trailing edge is performed using a free-form deformation parameterization technique with the purpose of examining the influence of the initial conditions of the parameterization on the optimization results, namely on the number of control points. High-fidelity gradient-based optimization using the discrete adjoint method is established by the coupling of OpenFOAM and Python within the DAFoam optimization framework. The results indicate that the number of control points has a considerable effect on the optimization process, in particular on the convergence, objective function value, and on the deformation feasibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call