Abstract

The classic features of lipoid proteinosis - beadlike papules and hoarseness - result from the accumulation of hyaline material in the mucocutaneous dermis. However, the characteristic manifestation in children - erosive, crusted lesions that lead to scarring - is rarely discussed and poorly understood. Lipoid proteinosis results from mutations in extracellular matrix protein 1, but the function of this protein is largely unknown. We performed ultrastructural studies on lesional epidermis, cultured monolayer keratinocytes, and raft keratinocyte cultures from blistering lesions of a child with lipoid proteinosis. All sections showed the dissociation of relatively intact desmosomes from keratinocytes, with desmosomes that were "free-floating" in the intercellular spaces or attached by thin strands to the cell membrane. These changes were present in serial sections of both tissue and cultured keratinocytes, suggesting this observation to be an inherent feature of keratinocytes devoid of extracellular matrix protein 1, rather than an artifact. Although additional patients should be studied, the diminished appearance of the inner dense plaque - the region of attachment of keratin intermediate filaments to desmosomal proteins - provides preliminary evidence that extracellular matrix protein 1 may participate in attaching keratin intermediate filaments to desmosomal region protein(s).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.