Abstract

Trying to predict thermodynamically stable and metastable solid compounds as function of pressure and temperature requires the global exploration of the enthalpy landscapes of chemical systems and the subsequent construction of their free enthalpy landscapes. In this work, we present a general approach to the determination of a free energy landscape. As an example, we construct the free enthalpy landscape of SrO for two different pressures on the empirical potential level and also compute various thermodynamic and elastic properties of SrO in the NaCl-, CsCl-, NiAs-, NbS-, TiP-, beta-BeO, sphalerite-, and wurtzite-structure type on an ab initio level. We employ density functional theory within the hybrid B3LYP approximation. The results show good agreement with experimental and theoretical data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call