Abstract

By coupling an enhanced sampling algorithm with an orbital-localized variant of Car-Parrinello molecular dynamics, the so-called atomic centered density matrix propagation model, we reconstruct the free energy profiles along reaction pathways using different density functional approximations (DFAs) ranging from locals to hybrids. In particular, we compare the computed free energy barrier height of proton transfer (PT) reactions to those obtained by a more traditional static approach, based on the intrinsic reaction coordinate (IRC), for two case systems, namely malonaldehyde and formic acid dimer. The obtained results show that both the IRC profiles and the potentials of mean force, derived from biased dynamic trajectories, are very sensitive to the density functional approximation applied. More precisely, we observe that, with the notable exception of M06-L, local density functionals always strongly underestimate the reaction barrier heights. More generally, we find that also the shape of the free energy profile is very sensitive to the density functional choice, thus highlighting the effect, often neglected, that the choice of DFA has also in the case of dynamics simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.