Abstract

In ordinary aqueous solution, B-DNA is the major structural form of DNA. After the addition of ethanol, DNA is thought to be aggregated/condensed in the A-form structure. However, there is uncertainty as to whether the B-to-A conformational change is connected to the aggregation/condensation steps. In this study, we performed all-atom molecular dynamics simulations and calculated the free-energy surface involved in the A/B conformational transition for isolated and aggregated Dickerson-Drew dodecamers (DDDs) in water and 85% ethanol environments. We found in the case of an isolated DDD, the overall free-energy profile is entirely downhill to give the B-DNA conformation in both water and 85% ethanol. However, in the aggregated state and 85% ethanol environment, there is a free-energy minimum associated with the A-DNA region in addition to the global B-DNA minimum, and there is a ∼3 kcal/mol free-energy barrier to the A-to-B conformational change. The molecular dynamics results suggest that aggregation of DNA is essential for forming A-DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.