Abstract
This article addresses the development of a free energy model for magnetostrictive transducers operating in hysteretic and nonlinear regimes. Such models are required both for material and system characterization and for model-based control design. The model is constructed in two steps. In the first, Helmholtz and Gibbs free energy relations are constructed for homogeneous materials with constant internal fields. In the second step, the effects of material nonhomogeneities and nonconstant effective fields are incorporated through the construction of appropriate stochastic distributions. Properties of the model are illustrated through comparison and prediction of data collected from a typical Terfenol-D transducer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.