Abstract

Because of their multimodality, mixture posterior distributions are difficult to sample with standard Markov chain Monte Carlo (MCMC) methods. We propose a strategy to enhance the sampling of MCMC in this context, using a biasing procedure which originates from computational Statistical Physics. The principle is first to choose a coordinate, that is, a direction in which the target distribution is multimodal. In a second step, the marginal log-density of the reaction coordinate with respect to the posterior distribution is estimated; minus this quantity is called free energy in the computational Statistical Physics literature. To this end, we use adaptive biasing Markov chain algorithms which adapt their targeted invariant distribution on the fly, in order to overcome sampling barriers along the chosen reaction coordinate. Finally, we perform an importance sampling step in order to remove the bias and recover the true posterior. The efficiency factor of the importance sampling step can easily be estimated a priori once the bias is known, and appears to be rather large for the test cases we considered. A crucial point is the choice of the reaction coordinate. One standard choice (used for example in the classical Wang-Landau algorithm) is minus the log-posterior density. We discuss other choices. We show in particular that the hyper-parameter that determines the order of magnitude of the variance of each component is both a convenient and an efficient reaction coordinate. We also show how to adapt the method to compute the evidence (marginal likelihood) of a mixture model. We illustrate our approach by analyzing two real data sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.