Abstract

Mono-altro-cyclodextrin (altro-CD) may undergo a conformational change of its altropyranose unit when encapsulating guest molecules of different sizes. This conformational transition is found to be coupled to the inclusion processes. In the present contribution, the possible conformational transition pathways in the four (self-)inclusion processes of altro-α and -β-CDs with moieties of variant shapes are explored from the insights of free-energy calculations. The two-dimensional free-energy landscapes characterising the coupled (self-)inclusion and isomerisation processes are determined, and the lowest free-energy pathways (LFEP) connecting the minima of the landscapes are located. The conformational statistics of the altropyranose units along the LFEPs reveal different transition pathways in the four (self-)inclusion processes. It can be concluded that when accommodating a free bulky guest molecule, the altropyranose unit will adjust its conformation to match the guest. However, such induced fit effect in the self-complexation of altro-CD derivatives will be weakened. The conformation of the altropyranose unit changes accompanying the self-complexation, but always adopts the 4C1 one in the self-inclusion complex, irrespective of the shape of the guest moieties. The present results help determine the transition states of the (self-)inclusion processes of CDs and further improve the understanding of the mechanical properties of CD-based molecular shuttles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.