Abstract

Receptor-mediated cell adhesion plays a critical role in cell migration, proliferation, signaling, and survival. A number of diseases, including cancer, show a strong correlation between integrin activation and metastasis. A better understanding of cell adhesion is highly desirable for not only therapeutic but also a number of tissue engineering applications. While a number of computational models and experimental studies have addressed the issue of cell adhesion to surfaces, no model or theory has adequately addressed cell adhesion at the molecular level. In this paper, the authors present a thermodynamic model that addresses receptor-mediated cell adhesion at the molecular level. By incorporating the entropic, conformational, solvation, and long- and short-range interactive components of receptors and the extracellular matrix molecules, they are able to predict adhesive free energy as a function of a number of key variables such as surface coverage, interaction distance, molecule size, and solvent conditions. Their method allows them to compute the free energy of adhesion in a multicomponent system where they can simultaneously study adhesion receptors and ligands of different sizes, chemical identities, and conformational properties. The authors' results not only provide a fundamental understanding of adhesion at the molecular level but also suggest possible strategies for designing novel biomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call