Abstract

Structural fluctuations in the thermal equilibrium of the kinesin motor domain are studied using a lattice protein model with Gō interactions. By means of the multi-self-overlap ensemble Monte Carlo method and the principal component analysis, the free-energy landscape is obtained. It is shown that kinesins have two subdomains that exhibit partial folding/unfolding at functionally important regions: one is located around the nucleotide binding site and the other includes the main microtubule binding site. These subdomains are consistent with structural variability that was reported recently based on experimentally-obtained structures. On the other hand, such large structural fluctuations have not been captured by B-factor or normal mode analyses. Thus, they are beyond the elastic regime, and it is essential to take into account chain connectivity for studying the function of kinesins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.