Abstract
Continued increases in computational power now make it possible to evaluate the free-energy landscape associated with the first-order liquid-liquid transition in realistic models of water for which an accurate estimate of the liquid-liquid critical point exists, and to explore its change with pressure near the coexistence line. We report the results of 50 μs-long NPT umbrella sampling simulations for two realistic models for water, TIP4P/2005 and TIP4P/ice, 3-9K below their critical temperatures. The free energy profile at different pressures clearly shows the presence of two well-defined free energy basins and makes it possible to identify the liquid-liquid spinodal points, the limits of stability that define the (temperature dependent) pressure range within which two distinct free energy basins exist. The results show that for temperatures less than 10K below the critical temperature, metastable states are possible across a very limited pressure interval, information that is relevant to the interpretation of experiments probing the metastable phase behavior of deeply supercooled water in the so-called no-man's land.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.