Abstract

Aromatic side chains (phenylalanine and tyrosine) of a protein flip by 180° around the Cβ-Cγ axis (χ2 dihedral of the side chain), producing two symmetry-equivalent states. The study of ring flip dynamics with nuclear magnetic resonance (NMR) experiments helps to understand local conformational fluctuations. Ring flips are categorized as slow (milliseconds and onward) or fast (nanoseconds to near milliseconds) based on timescales accessible to NMR experiments. In this study, we investigated the ability of the infrequent metadynamics approach to estimate the flip rate and discriminate between slow and fast ring flips for eight individual aromatic side chains (F4, Y10, Y21, F22, Y23, F33, Y35, and F45) of the basic pancreatic trypsin inhibitor. Well-tempered metadynamics simulations were performed to estimate the ring-flipping free-energy surfaces for all eight aromatic residues. The results indicate that χ2 as a standalone collective variable (CV) is not sufficient to obtain computationally consistent results. Inclusion of a complementary CV, such as χ1(Cα-Cβ), solved the problem for most residues and enabled us to classify fast and slow ring flips. This indicates the importance of librational motions in ring flips. Multiple pathways and mechanisms were observed for residues F4, Y10, and F22. Recrossing events were observed for residues F22 and F33, indicating a possible role of friction effects in ring flipping. The results demonstrate the successful application of infrequent metadynamics to estimate ring flip rates and identify certain limitations of the approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call