Abstract

This study applies a novel computational method to study molecular recognition for three sets of synthetic hosts: molecular clips, molecular tweezers, and a synthetic barbiturate receptor. The computed standard free energies of binding for the 12 binding reactions agree closely with experiment and provide insight into the roles of configurational entropy, preorganization, and induced fit in the systems studied. The computed changes in configurational entropy are comparable in magnitude to the changes in mean potential plus solvation energy, and they result primarily from changes in the average width of the energy wells upon binding. A strong correlation is observed between the changes in configurational energy and configurational entropy upon binding, resulting in near-linear compensation analogous to classical entropy-enthalpy compensation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.