Abstract
A Monte Carlo method for grand canonical and grand isoshear ensemble simulations has been used to characterize the free energy, energy, and entropy of clay mineral swelling. The Monte Carlo approach was found to be more efficient at simulating water content fluctuations in the highly constrained clay environment than a previously developed molecular dynamics method. Swelling thermodynamics calculated for Cs-, Na-, and Sr-montmorillonite clays indicate a strong dependence of swelling on the interlayer ion identity, in agreement with various experimental measurements. The Sr clay swells most readily, and both the Na and Sr clays prefer expanded states (two-layer hydrate or greater) when in contact with bulk water. In contrast, swelling is inhibited in the Cs clay. Differences in swelling behavior are traced directly to the tendency of the different ions to hydrate. The swelling free energies are decomposed into their energetic and entropic components, revealing an overall energetic driving force for the swelling phenomena. Entropic effects provide a smaller, mediating role in the swelling processes. The results provide a unique molecular perspective on experimentally well-characterized swelling phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.