Abstract

Electron-transfer reactions from phenols to parent radical cations of solvents were studied using pulse radiolysis. Phenols bearing electron-withdrawing, electron-donating and bulky substituents were investigated in non-polar solvents such as cyclohexane, n-dodecane, n-butyl chloride and 1,2-dichloroethane. The experiments revealed the direct, synchronous formation of phenoxyl radicals and phenol radical cations in all cases and in nearly the same relative amounts. This was explained by two competing electron-transfer channels which depend on the geometry of encounter between the parent solvent radical cations and the solute phenol molecules. The mechanism is analysed at a microscopic level, treating diffusion as a slow process and the local electron transfer as an extremely rapid event. Furthermore, the effect of various phenol substituents and solvent types on the electron-transfer mechanism and on the decay kinetics of the solute phenol radical cations was analysed. The results were further substantiated using a quantum chemical approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.