Abstract
We reveal a mechanism to enhance particle-matter interactions by exploiting the pseudo-Brewster effect of gain materials, presenting an enhancement of at least four orders of magnitude for light emission. This mechanism is enabled by the emergence of an unprecedented phase diagram that maps all phenomena of free-electron transition radiation into three distinct phases in a gain-thickness parameter space, namely, the conventional, intermediate, and Brewster phases, when an electron penetrates a dielectric slab with a modest gain and a finite thickness. Essentially, our revealed mechanism corresponds to the free-electron transition radiation in the Brewster phase, which also features ultrahigh directionality, always at the Brewster angle, regardless of the electron velocity. Counterintuitively, we find that the intensity of this free-electron Brewster-transition radiation is insensitive to the Fabry-Pérot resonance condition and, thus, the variation of slab thickness, and moreover, a weaker gain could lead to a stronger enhancement for light emission.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.