Abstract

Here we present a new paradigm of free-electron-bound-electron resonant interaction. This concept is based on a recent demonstration of the optical frequency modulation of the free-electron quantum electron wave function (QEW) by an ultrafast laser beam. We assert that pulses of such QEWs correlated in their modulation phase, interact resonantly with two-level systems, inducing resonant quantum transitions when the transition energy ΔE=ℏω_{21} matches a harmonic of the modulation frequency ω_{21}=nω_{b}. Employing this scheme for resonant cathodoluminescence and resonant EELS combines the atomic level spatial resolution of electron microscopy with the high spectral resolution of lasers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call