Abstract

We prove the so-called generalized Haff's law yielding the optimal algebraic cooling rate of the temperature of a granular gas described by the homogeneous Boltzmann equation for inelastic interactions with nonconstant restitution coefficient. Our analysis is carried through a careful study of the infinite system of moments of the solution to the Boltzmann equation for granular gases and precise $L^p$ estimates in the self-similar variables. In the process, we generalize several results on the Boltzmann collision operator obtained recently for homogeneous granular gases with constant restitution coefficient to a broader class of physical restitution coefficients that depend on the collision impact velocity. This generalization leads to the so-called $L^{1}$-exponential tails theorem for this model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.