Abstract

Heat transfer experiments were performed to investigate the effects of inclination and channel height-to-gap ratio on free convection in a simulated fin-passage with a strategic aim of devising a criterion for selecting the optimal fin length that could provide the maximum free convective capability. The ranges of parameters investigated include the Grashof number, up to 500,000; channel height-to-gap ratios of 1, 2, and 3; and tilt angles of 0°, 30°, 60°, 90°, 120°, 150°, and 180°. Selections of local and spatially averaged Nusselt number results demonstrate the manner by which the Grashof number, tilt angle, and channel height-to-gap ratio interactively affect the heat transfer. In conformity with the experimentally revealed heat transfer physics, the correlation of a spatially-averaged Nusselt number over two parallel walls and the bottom surface of an open-ended channel is derived that permits the individual and interactive effects of the Grashof number, tilt angle, and channel height-to-gap ratio on heat transfers to be evaluated. A criterion for selecting the optimal height-to-gap ratio of the fin channel is subsequently formulated as a design tool for maximizing the convective capability of a free convective fin assembly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.