Abstract

Laminar, free convective flow through a vertical cylinder induced by the thermal and concentration buoyancy forces is investigated. The numerical studies involve development of a steady-state, two-dimensional heat and mass transfer model for the moist air core of the vertical tube. The stream function-vorticity method is employed to simplify the governing, coupled conservation equations which were then numerically solved by the successive over-relaxation (SOR) and alternating direction implicit ((ADI) methods. A graphical correlation was found between dimensionless flow rate and dimensionless tube length as a function of the buoyancy force ratio N = Gr/Grc. Excellent agreement was obtained for the dimensionless flow rale results with those of Davis and Perona16 and Kageyama and Izumi13 for the case when only the-thermal buoyancy force is considered. The combined buoyancy force from thermal and species diffusion provides larger local Nusselt Nu and local Sherwood Sh numbers relative to the case when just one buoyancy force is accounted for. Both local Nu and local Sh are seen to asymptotically approach a constant value as flow develops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.