Abstract

AbstractAn analysis is performed to study the free convection of a dusty‐gas flow along a semi‐infinite isothermal vertical cylinder. The governing equations of the flow problem are transformed into non‐dimensional form and the resulting nonlinear, coupled parabolic partial differential equations have been solved numerically using an implicit finite difference scheme of Crank–Nicholson type. The flow variables such as gas–velocity, dust‐particle velocity and temperature, shearing stress and heat transfer coefficients are calculated numerically for various parameters occurring in the problem. It is observed that due to the presence of dust particles, the gas velocity is found to decrease. Copyright © 2009 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.