Abstract
Laser interferometry and flow visualization were used to study free convective heat transfer inside a vertical channel. Most studies in the literature have investigated buoyancy forces in a single direction. The study presented here investigated opposing buoyancy forces, where one wall is warmer than the ambient and the other wall is cooler than the ambient. An experimental model of an isothermally, asymmetrically heated vertical channel was constructed. Interferometry provided temperature field visualization and flow visualization was used to obtain the streamlines. Experiments were carried out over a range of aspect ratios between 8.8 and 26.4, using temperature ratios of 0, −0.5, and −0.75. These conditions provide a modified Rayleigh number range of approximately 5 to 1100. In addition, the measured local and average Nusselt number data were compared to numerical solutions obtained using ANSYS FLUENT. Air was the fluid of interest. So the Prandtl number was fixed at 0.71. Numerical solutions were obtained for modified Rayleigh numbers ranging from the laminar fully developed flow regime to the turbulent isolated boundary layer regime. A semi-empirical correlation of the average Nusselt number was developed based on the experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.