Abstract

The steady-state free convection inside a cavity made of two horizontal straight walls and two vertical bent-wavy walls and filled with a fluid-saturated porous medium is numerically investigated in the present paper. The wavy walls are assumed to follow a profile of cosine curve. The horizontal walls are kept adiabatic, while the bent-wavy walls are isothermal but kept at different temperatures. The Darcy and energy equations (in non-dimensional stream function and temperature formulation) are solved numerically using the Galerkin Finite Element Method (FEM). Flow and heat transfer characteristics (isothermal, streamlines and local and average Nusselt numbers) are investigated for some values of the Rayleigh number, cavity aspect ratio and surface waviness parameter. The present results are compared with those reported in the open literature for a square cavity with straight walls. It was found that these results are in excellent agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.