Abstract

In this study, mathematical modeling of the energy transfer and flow characteristics of ternary nanoliquid in a square enclosure is performed. In the cavity considered, the left and bottom borders are warmed uniformly or non-uniformly when the rest of the borders are cooled. The robust finite element method with quads and triangles as elements is used to work out the control equations of the problem. The current study is validated against previously published works, and good agreement is shown. The isolines are investigated for various Rayleigh numbers at uniform and non-uniform thermal boundary conditions. The impact of ternary hybrid nanofluids on the mean Nusselt number at hot borders is explored in dependence on the Rayleigh number and nanoparticle concentration. A comparative study of different fluids for the mean Nusselt number at heated borders is also conducted and analyzed with appropriate graphs and tables. It has been shown that ternary nanofluids can be more effective compared to mono- and hybrid nanofluids, with a more essential growth of the energy transport rate with nanoadditives concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.