Abstract

Solution processed organic photovoltaic (OPV) devices are promising for low-embedded energy and large-scale renewable energy production. The efficiency of charge carrier generation is a critical factor influencing the performance of photovoltaic devices. However, quantifying charge carrier generation can be challenging, with the results from experimental methods not always being easily correlated with solar cell performance. In this paper, we describe how photoinduced metal-insulating-semiconductor charge-extraction-by-linearly-increasing-voltage (photo-MIS-CELIV) can be used to determine the free charge carrier generation efficiency (FCGE) in OPV films. One of the benefits of this approach is that the FCGE can be measured alongside the charge mobility to provide a holistic picture of the fate of charges, from generation to extraction. We demonstrate this method through quantifying the FCGE of bulk heterojunctions of PCE10:ITIC-4F, D18:Y6 and PPDT2FBT:PC71BM, obtaining values of 47.4 ± 1.6 %, 75.0 ± 2.5 % and 70.6 ± 4.6 %, respectively. The measured FCGEs for these blends were consistent with the device-based external quantum efficiencies (EQEs) at the excitation wavelength used. The use of photo-MIS-CELIV for quantifying the FCGE increases its utility beyond simple charge mobility measurements and provides an extra method to enable optimisation of OPV device performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.