Abstract

Nonlinear degenerate four wave mixing and cross phase modulation are established approaches for all optical frequency manipulation in a silicon chip. These approaches require exact group velocity and/or phase velocity matching of pump, signal, and idler. On the other hand, several experimental demonstrations were presented recently, where frequency of light was changed by a free carrier front propagating in a silicon waveguide. This Doppler-like effect is less known, but has important advantages for frequency manipulation on chip. It requires no phase velocity matching and is not dependent on the shape and duration of the pump pulse. It also allows packet switching and can operate in a pump power independent regime. Here, we shortly review the work on front induced indirect transitions in silicon slow light waveguides. We consider three possible interaction regimes: transmission through the front, reflection from the front, and moving with the front called surfing. We derive analytical equations for the f...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.