Abstract

BackgroundMagnetic resonance (MR) elastography of the liver measures hepatic stiffness, which correlates with the histopathological staging of liver fibrosis. Conventional Cartesian gradient-echo (GRE) MR elastography requires breath-holding, which is challenging for children. Non-Cartesian radial free-breathing MR elastography is a potential solution to this problem.ObjectiveTo investigate radial free-breathing MR elastography for measuring hepatic stiffness in children.Materials and methodsIn this prospective pilot study, 14 healthy children and 9 children with liver disease were scanned at 3 T using 2-D Cartesian GRE breath-hold MR elastography (22 s/slice) and 2-D radial GRE free-breathing MR elastography (163 s/slice). Each sequence was acquired twice. Agreement in the stiffness measurements was evaluated using Lin’s concordance correlation coefficient (CCC) and within-subject mean difference. The repeatability was assessed using the within-subject coefficient of variation and intraclass correlation coefficient (ICC).ResultsFourteen healthy children and seven children with liver disease completed the study. Median (±interquartile range) normalized measurable liver areas were 62.6% (±26.4%) and 44.1% (±39.6%) for scan 1, and 60.3% (±21.8%) and 43.9% (±44.2%) for scan 2, for Cartesian and radial techniques, respectively. Hepatic stiffness from the Cartesian and radial techniques had close agreement with CCC of 0.89 and 0.94, and mean difference of 0.03 kPa and −0.01 kPa, for scans 1 and 2. Cartesian and radial techniques achieved similar repeatability with within-subject coefficient of variation=1.9% and 3.4%, and ICC=0.93 and 0.92, respectively.ConclusionIn this pilot study, radial free-breathing MR elastography was repeatable and in agreement with Cartesian breath-hold MR elastography in children.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.