Abstract
BackgroundThe free-breathing T1-weighted 3D Stack of Stars GRE (StarVIBE) MR sequence potentially reduces artifacts in chest MRI. The purpose of this study was to evaluate StarVIBE for the detection of pulmonary nodules in 18F-FDG PET/MRI.Material and methodsIn this retrospective analysis, conducted on a prospective clinical trial cohort, 88 consecutive women with newly diagnosed breast cancer underwent both contrast-enhanced whole-body 18F-FDG PET/MRI and computed tomography (CT). Patients’ chests were examined on CT as well as on StarVIBE and conventional T1-weighted VIBE and T2-weighted HASTE MR sequences, with CT serving as the reference standard. Presence, size, and location of all detectable lung nodules were assessed. Wilcoxon test was applied to compare nodule features and Pearson’s, and Spearman’s correlation coefficients were calculated.ResultsOut of 65 lung nodules detected in 36 patients with CT (3.7 ± 1.4 mm), StarVIBE was able to detect 31 (47.7%), VIBE 26 (40%) and HASTE 11 (16.8%), respectively. Overall, CT showed a significantly higher detectability than all MRI sequences combined (65 vs. 36, difference 44.6%, p < 0.001). The VIBE showed a significantly better detection rate than the HASTE (23.1%, p = 0.001). Detection rates between StarVIBE and VIBE did not significantly differ (7.7%, p = 0.27), but the StarVIBE showed a significant advantage detecting centrally located pulmonary nodules (66.7% vs. 16.7%, p = 0.031). There was a strong correlation in nodule size between CT and MRI sequences (HASTE: ρ = 0.80, p = 0.003; VIBE: ρ = 0.77, p < 0.001; StarVIBE: ρ = 0.78, p < 0.001). Mean image quality was rated as good to excellent for CT and MRI sequences.ConclusionThe overall lung nodule detection rate of StarVIBE was slightly, but not significantly, higher than conventional T1w VIBE and significantly higher than T2w HASTE. Detectability of centrally located nodules is better with StarVIBE than with VIBE. Nevertheless, all MRI analyses demonstrated considerably lower detection rates for small lung nodules, when compared to CT.
Highlights
The free-breathing T1-weighted 3D Stack of Stars GRE (StarVIBE) MR sequence potentially reduces artifacts in chest Magnetic resonance imaging (MRI)
Out of 65 lung nodules detected in 36 patients with computed tomography (CT) (3.7 ± 1.4 mm), StarVIBE was able to detect 31 (47.7%), VIBE 26 (40%) and HASTE 11 (16.8%), respec‐ tively
Detection rates between StarVIBE and VIBE did not significantly differ (7.7%, p = 0.27), but the StarVIBE showed a significant advantage detecting centrally located pulmonary nodules (66.7% vs. 16.7%, p = 0.031)
Summary
The free-breathing T1-weighted 3D Stack of Stars GRE (StarVIBE) MR sequence potentially reduces artifacts in chest MRI. Magnetic resonance imaging (MRI) has made tremendous progress over the last decades, driven by new developments in sequence technique, reducing the overall examination time and improving image quality. As MRI is a radiation-free imaging method, it is a valuable alternative to computed tomography (CT), especially in younger patients. One major limitation is its susceptibility to respiratory and cardiac motion resulting in a markedly reduced assessability of the lung parenchyma and limited detectability of potentially metastatic lung nodules compared with chest CT. A strict immobility and compliance to breathing instructions is required, which can sometimes be difficult in everyday clinical routine, especially when scanning children or multi-morbid older patients. The use of fast MR sequences is required, which are associated with a loss of spatial image resolution [6]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.