Abstract

The natural frequencies of isotropic and composite laminates are presented. The forced vibration analysis of laminated composite plates and shells subjected to arbitrary loading is investigated. In order to overcome membrane and shear locking phenomena, the assumed natural strain method is used. To develop a laminated shell element for free and forced vibration analysis, the equivalent constitutive equation that makes the computation of composite structures efficient was applied. The Mindlin-Reissner theory which allows the shear deformation and rotary inertia effect to be considered is adopted for development of nine-node assumed strain shell element. The present shell element offers significant advantages since it consistently uses the natural co-ordinate system. Results of the present theory show good agreement with the 3-D elasticity and analytical solutions. In addition the effect of damping is investigated on the forced vibration analysis of laminated composite plates and shells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.