Abstract
Free vibrations and the transverse response of sandwich plates with viscoelastic cores under wide-band random excitation is studied with special attention to the so-called pumping, thickness-shear and stretching modes. The quadratic displacement field is adopted for all displacement components of the core to accurately capture the higher modes excited by the wide-band excitation. The Love-Kirchhoff plate theory is used for the face layers. The viscoelastic behavior of the core is modeled by the Golla–Hughes–McTavish method. An analytical solution using the normal mode method is provided for the simply supported boundary conditions by including a different family of modes. The effects of some geometric and material properties on the frequencies, damping ratios and also root mean square responses are explored. The participation of the through-the-thickness deformation in the bending mode vibration of the top layer is also investigated, which is found to be mostly resulting from the second order term of the transverse displacement expansion in symmetric configurations. Moreover, the alteration of the response with the exclusion of a different family of modes from the solution is investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.