Abstract

In this article, we study the behaviour of the RLC cells for the four configurations that we presented earlier in Abi Zeid Daou et al. (2009a). An electric circuit is used in order to study the fractional behaviour and the robustness of these RLC operators and compare their responses to the behaviour of the fractance which is an ideal fractional operator (Moreau et al., 2003). This analysis is conducted for both natural and forced responses. In more details, the initial conditions of the capacitors and inductances are neglected in the first case and they are taken into consideration in the second one. The number of initial conditions is related to the number of RLC cells used. The robustness of all arrangements is analysed by varying the unsteady parameter value which is represented by an inductance in the electrical circuit. This inductance represents a different variable parameter in each field of application. For example, in the hydropneumatic domain, this inductance refers to the mass of the vehicle as the mass has the main influence on the dynamics and the robustness when designing the active suspension (Moreau et al., 2001). A conclusion will sum up the results for all four arrangements and a confirmation that the phase constancy and the robustness are present in both modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.