Abstract

Atmospheric fine particles (PM 2.5) collected during August 1997–July 1998 and wintertime fog waters collected during 1997–1999 at Davis, California were analyzed for free and combined amino compounds. In both PM 2.5 and fog waters, the average concentrations of combined amino compounds (CAC, e.g., proteins and peptides) were generally 4–5 times higher than those of free amino compounds (FAC, i.e., amino acids and alkyl amines). Concentrations of total amino compounds (TAC=FAC+CAC) ranged from 1260 to 3650 pmol m −3 air in PM 2.5, and from 1620 to 5880 pmol m −3 air in fog waters. Average values (±1 σ) were 2500±879 and 3400±1430 pmol m −3 air, respectively. Concentrations of amino compounds in PM 2.5 varied seasonally, with a peak during late winter and early spring. Ornithine was a major FAC component in both PM 2.5 and fog waters (typically accounting for ∼20% of FAC), but these sample types otherwise had fairly different FAC distributions. FAC in PM 2.5 were enriched in protein-type amino species such as glycine/threonine, serine and alanine, while fog water FAC had significantly higher levels of non-protein species such as methylamine, γ-aminobutyric acid and ethanolamine. The compositions of CAC in PM 2.5 and fogs were fairly similar and were mainly protein-type. Mass concentrations of TAC in PM 2.5 and fog waters were, on average, 302 and 399 ng m −3 air, respectively. Amino compounds were an important component of the organic carbon pool for both fog and particles, with TAC accounting for an average of 13% of the dissolved organic carbon in fog waters and ∼10% of the water-soluble organic carbon in PM 2.5. At these levels amino compounds likely play important roles in the chemistry of fog drops and fine particles, for example by influencing their buffering capacity and basicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.