Abstract

We report below on nuclear magnetic resonance investigations of the structure and exchange kinetics for the free acid, anion, sodium complex, and barium complex of the ionophore lasalocid A (X537A) in methanol solution. A comparison between the proton and carbon longitudinal relaxation times of lasalocid in nonpolar and polar solvents demonstrates that the free acid (HX) is a monomer in methanol solution. Parallel proton and carbon relaxation measurements demonstrate that the anion (X-), sodium complex (NaX), and barium complex (BaX+) are also monomeric in methanol solution. These results are in contrast to the Na2X2 dimer and the BaX2-H20 dimer observed in crystals and in nonpolar (cyclohexane and methylene chloride) solutions. Large downfield shifts on complex formation (X- to NaX and BaX+) are detected for protons located on the polar face of the ionophore with their C-H bonds directed towards and proximal to the metal ion. The exchange of lasalocid anion between free (X-) and complexed (BaX+) states in methanol can be monitored from the temperature-dependent line shapes of the proton resonances at superconducting fields. The exchange rates are independent of the reactant concentrations and are characteristic of a rate-determining dissociation of BaX+ in methanol solution with activation parameters delta H++ = 6.5 kcal mol-1 (25 degrees) and delta S++ = -20.0 cal mol-1 degree -1 (1 cal = 4.184 J). The rate constants for dissociation and formation of BaX+ complex in methanol, 25 degrees, are 5.2 X 10(3) sec-1 and 1.5 X 10(10) M-1 sec-1, respectively. These studies were extended to derive the activation parameters for the exchange of lasalocid anion between BaX+ and NaX and between BaX+ and HX in methanol, while the exchange among HX, X-, and NaX is too rapid to be monitored on the time scale of nuclear magnetic resonance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call