Abstract

We replace a ring with a small ℂ-linear category 𝒞, seen as a ring with several objects in the sense of Mitchell. We introduce Fredholm modules over this category and construct a Chern character taking values in the cyclic cohomology of 𝒞. We show that this categorified Chern character is homotopy invariant and is well-behaved with respect to the periodicity operator in cyclic cohomology. For this, we also obtain a description of cocycles and coboundaries in the cyclic cohomology of 𝒞 (and more generally, in the Hopf cyclic cohomology of a Hopf-module category) by means of DG-semicategories equipped with a trace on endomorphism spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.