Abstract

With the increasing availability of non-Euclidean data objects, statisticians are faced with the task of developing appropriate statistical methods for their analysis. For regression models in which the predictors lie in Rp and the response variables are situated in a metric space, conditional Fréchet means can be used to define the Fréchet regression function. Global and local Fréchet methods have recently been developed for modeling and estimating this regression function as extensions of multiple and local linear regression, respectively. This paper expands on these methodologies by proposing the Fréchet single index model, in which the Fréchet regression function is assumed to depend only on a scalar projection of the multivariate predictor. Estimation is performed by combining local Fréchet along with M-estimation to estimate both the coefficient vector and the underlying regression function, and these estimators are shown to be consistent. The method is illustrated by simulations for response objects on the surface of the unit sphere and through an analysis of human mortality data in which lifetable data are represented by distributions of age-of-death, viewed as elements of the Wasserstein space of distributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.