Abstract

We show that the dual Bp·locΩ′ of the variable exponent Hörmander space Bp(·)loc(Ω) is isomorphic to the Hörmander space B∞c(Ω) (when the exponent p(·) satisfies the conditions 0<p-≤p+≤1, the Hardy-Littlewood maximal operator M is bounded on Lp(·)/p0 for some 0<p0<p- and Ω is an open set in Rn) and that the Fréchet envelope of Bp(·)loc(Ω) is the space B1loc(Ω). Our proofs rely heavily on the properties of the Banach envelopes of the p0-Banach local spaces of Bp(·)loc(Ω) and on the inequalities established in the extrapolation theorems in variable Lebesgue spaces of entire analytic functions obtained in a previous article. Other results for p(·)≡p, 0<p<1, are also given (e.g., all quasi-Banach subspace of Bploc(Ω) is isomorphic to a subspace of lp, or l∞ is not isomorphic to a complemented subspace of the Shapiro space hp-). Finally, some questions are proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.