Abstract

Abstract The microlensing effect has developed into a powerful technique for a diverse range of applications including exoplanet discoveries, structure of the Milky Way, constraints on MAssive Compact Halo Objects, and measurements of the size and profile of quasar accretion disks. In this paper, we consider a special type of microlensing events where the sources are fast radio bursts (FRBs) with ∼milliseconds (ms) durations for which the relative motion between the lens and source is negligible. In this scenario, it is possible to temporally resolve the individual microimages. As a result, a method beyond the inverse ray shooting method, which only evaluates the total magnification of all microimages, is needed. We therefore implement an algorithm for identifying individual microimages and computing their magnifications and relative time delays. We validate our algorithm by comparing to analytical predictions for a single microlens case and find excellent agreement. We show that the superposition of pulses from individual microimages produces a light curve that appears as multipeaked FRBs. The relative time delays between pulses can reach 0.1–1 ms for stellar-mass lenses and hence can already be resolved temporally by current facilities. Although not yet discovered, microlensing of FRBs will become regular events and surpass the number of quasar microlensing events in the near future when 104−5 FRBs are expected to be discovered on a daily basis. Our algorithm provides a way of generating the microlensing light curve that can be used for constraining stellar-mass distribution in distant galaxies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call