Abstract

ABSTRACTWe present a model for fast radio bursts (FRBs) where a large-amplitude Alfvén wave packet is launched by a disturbance near the surface of a magnetar, and a substantial fraction of the wave energy is converted to coherent radio waves at a distance of a few tens of neutron star radii. The wave amplitude at the magnetar surface should be about 1011 G in order to produce an FRB of isotropic luminosity 1044 erg s−1. An electric current along the static magnetic field is required by Alfvén waves with non-zero component of transverse wave vector. The current is supplied by counter-streaming electron–positron pairs, which have to move at nearly the speed of light at larger radii as the plasma density decreases with distance from the magnetar surface. The counter-streaming pairs are subject to two-stream instability, which leads to formation of particle bunches of size of the order of c/ωp, where ωp is the plasma frequency. A strong electric field develops along the static magnetic field when the wave packet arrives at a radius where electron–positron density is insufficient to supply the current required by the wave. The electric field accelerates particle bunches along the curved magnetic field lines, and that produces the coherent FRB radiation. We provide a number of predictions of this model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.