Abstract
The concept of taking loan has been in existence since inception of the human race but it is now taking diverse dimensions. This spans through personal exchange of loans for repayment based on personal track records, enjoying loans as proceeds of daily contribution without collaterals, except for the banking sector that requests collaterals for official loans. The uniform occurrence of being unable to pay the debts and resulting in a default is evident to the level of bank closures and nations’ bankruptcy is experienced across board. With a large volume and variety of data, credit history judgment by man is inefficient; case-based, analogy-based reasoning and statistical approaches have been employed but the 21st century fraudulent attempts cannot be discovered by these approaches, hence; the machine learning approach using the support vector machine. This work employs a supervised learning approach based on machine learning to predict the possibility of a fraud in a loan application through hidden trends in data instead of giving loans which ordinarily should not be approved; past occurrences discovered through machine learning reveals risky loans and a possible fraud by humans in approvals that can result in a default. Machine learning approaches are able to detect fraudulent financial statements to avert business comatose.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.