Abstract

Reduced levels of the protein frataxin cause the neurodegenerative disease Friedreich's ataxia. Pathology is associated with disruption of iron-sulfur cluster biosynthesis, mitochondrial iron overload, and oxidative stress. Frataxin is a highly conserved iron-binding protein present in most organisms. Despite the intense interest generated since the determination of its pathology, identification of the cellular function of frataxin has so far remained elusive. In this review, we revisit the most significant milestones that have led us to our current understanding of frataxin and its functions. The picture that emerges is that frataxin is a crucial element of one of the most essential cellular machines specialized in iron-sulfur cluster biogenesis. Future developments, therefore, can be expected from further advancements in our comprehension of this machine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.