Abstract

In sea-urchin spermatozoa, energy required for flagellar motility is provided by ATP diffusion from mitochondria located at the proximal ends of the flagella along with the creatine shuttle system. However, no direct analysis of the diffusion rates inside flagella has been carried out thus far. Using a FRAP (fluorescence recovery after photobleaching) technique, we determined the diffusion coefficients of fluorescein-derivatives (calcein, carboxyfluorescein and Oregon Green) to be 63-64 microm2 s(-1). Although these values are about one third of the estimates that were previously used for theoretical calculations, we concluded that the rate of ATP diffusion inside spermatozoa was high enough to support the continuous motility of sea-urchin sperm flagella if the creatine shuttle system is working. We also investigated the diffusion rate through the ;neck' region between the head and tail. When the head region of a calcein-loaded spermatozoon was photobleached, slow recovery of head fluorescence along with the decrease of fluorescence signal in the tail region was observed. It suggests that small molecules such as calcein (Mr, 622.54) can move beyond the boundary between the head and the flagellum. We expect that these findings regarding the diffusion properties inside spermatozoa will provide us with more general insights into the energy equilibrium and material transportation by passive diffusion inside eukaryotic cilia and flagella.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.