Abstract

This paper presents a modified multi-body dynamic model and a linear time-invariant model with actuator faults (loss of effectiveness faults, bias faults) and matched and unmatched uncertainties. Based on the fault model, a class of adaptive and robust tracking controllers are proposed which are adjusted online to tolerate the time-varying loss of effectiveness faults and bias faults, and compensate matched disturbances without the knowledge of bounds. For unmatched uncertainties, optimal control theory is added to the controller design processes. Simulations on a pantograph are shown to verify the efficiency of the proposed fault-tolerant design approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call