Abstract

Reduced-order models (ROMs) are a widely used and powerful approach to reducing the complexity of predictive physics-based numerical simulations for a wide range of applications, including electronics and fluid mechanics such as geologic CO2 sequestration (GCS). ROMs are critical for optimization, sensitivity analysis, model calibration and uncertainty quantification where full-order models cannot be feasibly executed many times. Traditional approaches generate a single ROM for each simulated response (e.g., CO2 injection rates, pH changes) based on a set of training simulations. Here, we demonstrate that a single ROM can display excellent overall predictive statistics, but have predictions that dramatically and unacceptably deviate from simulator responses especially when the response variable has a large range (i.e., vary over multiple orders of magnitude). For example, we show that a traditional statistically-high-performing GCS ROM (coefficient of determination R2 of 0.99) can have average absolute relative errors of over 200%. To address this, we propose a new and novel approach where a set of sub-ROMs are generated to overcome the potential pitfalls in traditional single ROM development. The effectiveness of the proposed approach—the ROMster framework—is demonstrated using a case study of predicted CO2 injection rates for GCS. We find our approach is a robust and general framework for ROM development, reducing the average “error” from 200% to only 4% in our case study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.