Abstract

The spectroscopic Franck-Condon (FC) principle is extended to mechanochemistry. If the external force is applied rapidly (the sudden-force regime), then the transition between the potential energy surface and the force-modified potential energy surface is analogous to the optical electronic transition. Such a transition produces a nonequilibrium ensemble of vibrationally excited molecules. This excess of vibrational energy is another activation source in addition to the well-known reaction barrier modulation by the external force. In the same time, the nonequilibrium vibrational distribution implies nonstatistical kinetics of a mechanochemical transformation. Mechanochemical FC principle thus provides a conceptual picture for the sudden-force mechanochemistry and opens possibilities for quantitative calculations of the mechanochemical rates and mechanisms. Here we use it to compute the dissociation rates of a model diatomic molecule and to explain the selectivity in mechanochemical bond breaking in n-butane. The approach is predicted to be relevant for large-magnitude external forces, applied instantaneously. Otherwise, the excess vibrational energy will dissipate due to intramolecular vibrational redistribution and interaction with environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call