Abstract

Explicitly electron correlating coupled cluster calculations, CCSD(T)-F12a, were performed to determine three-dimensional potential energy hypersurfaces of disulphanide and disulphanyl in an automated approach. Surfaces for different electronic states were used in a Watson rovibrational Hamiltonian ansatz to obtain the correlated anharmonic vibrational wavefunctions. Subsequently the anharmonic Franck–Condon overlap integrals were evaluated. The computed Franck–Condon profiles were compared to experimental photodetachment-photoelectron spectra and confirm essentially the assignments made previously. The profiles indicate, however, additional weaker, and as of yet unresolved, additional features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.