Abstract

We present a simple formula for the overlap integrals of two sets of multi-dimensional harmonic oscillators. The oscillators have in general different equilibrium points, force constants, and natural vibration modes. The formula expresses the overlap matrix in the one-dimensional case, 〈 m′| n′′〉, as a so-called LU decomposition, 〈m′|n′′〉=〈0′|0′′〉 ∑ L mtU tn , where the summation index has a range 0≤ t≤min( m, n), i.e., it is the matrix product of a lower-triangular matrix L with an upper-triangular U. These matrices are obtained from simple recursion formulae. This form is essentially retained in the multi-dimensional case. General matrix elements are obtained by exact and finite expressions, relating them to matrix elements over a single set of harmonic oscillator wave functions. We present test calculations with error estimates, also comparing with literature examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.