Abstract
Francisella tularensis is a zoonotic pathogen and the causative agent of tularemia. F. tularensis replicates to high levels within the cytosol of macrophages and other host cells while subverting the host response to infection. Critical to the success of F. tularensis is its ability to delay macrophage apoptosis to maintain its intracellular replicative niche. However, the host-signaling pathway(s) modulated by F. tularensis to delay apoptosis are poorly characterized. The outer membrane channel protein TolC is required for F. tularensis virulence and its ability to suppress apoptosis and cytokine expression during infection of macrophages. We took advantage of the F. tularensis ∆tolC mutant phenotype to identify host pathways that are important for activating macrophage apoptosis and that are disrupted by the bacteria. Comparison of macrophages infected with wild-type or ∆tolC F. tularensis revealed that the bacteria interfere with TLR2-MYD88-p38 signaling at early times post infection to delay apoptosis, dampen innate host responses, and preserve the intracellular replicative niche. Experiments using the mouse pneumonic tularemia model confirmed the in vivo relevance of these findings, revealing contributions of TLR2 and MYD88 signaling to the protective host response to F. tularensis, which is modulated by the bacteria to promote virulence. IMPORTANCE Francisella tularensis is a Gram-negative intracellular bacterial pathogen and the causative agent of the zoonotic disease tularemia. F. tularensis, like other intracellular pathogens, modulates host-programmed cell death pathways to ensure its replication and survival. We previously identified the outer membrane channel protein TolC as required for the ability of F. tularensis to delay host cell death. However, the mechanism by which F. tularensis delays cell death pathways during intracellular replication is unclear despite being critical to pathogenesis. In the present study, we address this gap in knowledge by taking advantage of ∆tolC mutants of F. tularensis to uncover signaling pathways governing host apoptotic responses to F. tularensis and which are modulated by the bacteria during infection to promote virulence. These findings reveal mechanisms by which intracellular pathogens subvert host responses and enhance our understanding of the pathogenesis of tularemia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.