Abstract

ABSTRACTAn olistostrome and bounding turbidites are exposed within the late Mesozoic Franciscan Complex along the Crescent City (California) coastline. Facies grade in character from Mutti & Ricci Lucchi (1978) mixed facies B, C and D, to F (the olistostrome), to mixed A, B and E, progressing upwards within the Franciscan stratigraphic section. The facies F unit outcrop is up to 600 m thick and extends 12 km along strike. It consists of oblate to tabular blocks, up to 200 m in maximum dimension, of greenstone, tonalite, radiolarian chert, limestone, phyllite and greywacke dispersed in a scaly argillite matrix. The olistostromal origin of the unit is indicated by depositional contacts with bounding turbidites, by the presence of abundant recycled sedimentary clasts within the unit, and by the presence of sedimentary breccias and associated dismembered, slump‐folded turbidites both within the olistostrome and among subjacent turbidites. Sandstones are chiefly feldspathic litharenites that were very likely derived from the partially dissected, late Mesozoic Sierran‐Klamath magmatic are.Franciscan rocks record an early pervasive, layer‐parallel flattening strain in such features as extensional faults, necking and pinch‐and‐swell structures. Several scales of extensional faulting account for the juxtaposition of turbidites of different facies and/or with varying degrees of stratal disruption, the formation of sandstone lozenges, and the formation of scaly foliation in the olistostrome matrix. The latter resulted from the juxtaposition of lenticles with varying concentrations of silt and clay. These were ultimately derived from the finer divisions of turbidite beds that were incorporated into the olistostrome. The presence of gradational contacts between some sandstone olistoliths and the olistostrome matrix, and of sandstone dykes that intrude fractures and associated drag‐folded turbidite beds indicate that Franciscan sediments were not lithified during their early deformation. These sediments were deposited in either a trench or trench slope basin, and were first deformed either by gravity collapse of the trench slope cover or, less likely, by vertical loading beneath the toe of the accretionary wedge. They later were folded during internal shortening of the growing Franciscan accretionary prism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.